HomeMobile ModelsFFNet-40S-Quantized

FFNet-40S-Quantized

Semantic segmentation for automotive street scenes.

FFNet-40S-Quantized is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.

4.62ms
Inference Time
0-65MB
Memory Usage
97NPU
Layers

Technical Details

Model checkpoint:ffnet40S_dBBB_cityscapes_state_dict_quarts
Input resolution:2048x1024
Number of parameters:13.9M
Model size:13.5 MB

Applicable Scenarios

  • Automotive
  • Autonomous Driving
  • Camera

Supported Mobile Form Factors

  • Phone
  • Tablet

Licenses

Source Model:BSD-3-CLAUSE
Deployable Model:AI Model Hub License

Tags

  • quantized
    A “quantized” model can run in low or mixed precision, which can substantially reduce inference latency.
  • real-time
    A “real-time” model can typically achieve 5-60 predictions per second. This translates to latency ranging up to 200 ms per prediction.

Supported Mobile Devices

  • Google Pixel 3
  • Google Pixel 3a
  • Google Pixel 3a XL
  • Google Pixel 4
  • Google Pixel 4a
  • Google Pixel 5a 5G
  • Samsung Galaxy S21
  • Samsung Galaxy S21 Ultra
  • Samsung Galaxy S21+
  • Samsung Galaxy S22 5G
  • Samsung Galaxy S22 Ultra 5G
  • Samsung Galaxy S22+ 5G
  • Samsung Galaxy S23
  • Samsung Galaxy S23 Ultra
  • Samsung Galaxy S23+
  • Samsung Galaxy S24
  • Samsung Galaxy S24 Ultra
  • Samsung Galaxy S24+
  • Samsung Galaxy Tab S8
  • Xiaomi 12
  • Xiaomi 12 Pro

Supported Mobile Chipsets

  • Snapdragon® 8 Gen 1 Mobile
  • Snapdragon® 8 Gen 2 Mobile
  • Snapdragon® 8 Gen 3 Mobile
  • Snapdragon® 888 Mobile