SqueezeNet-1_1Quantized
Imagenet classifier and general purpose backbone.
SqueezeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
Technical Details
Model checkpoint:Imagenet
Input resolution:224x224
Number of parameters:1.24M
Model size:1.30 MB
Applicable Scenarios
- Gaming
- Robotics
Supported Form Factors
- Phone
- Tablet
- IoT
- XR
Licenses
Source Model:BSD-3-CLAUSE
Deployable Model:AI Model Hub License
Tags
- backboneA “backbone” model is designed to extract task-agnostic representations from specific data modalities (e.g., images, text, speech). This representation can then be fine-tuned for specialized tasks.
- quantizedA “quantized” model can run in low or mixed precision, which can substantially reduce inference latency.
Supported Devices
- Google Pixel 3
- Google Pixel 3a
- Google Pixel 3a XL
- Google Pixel 4
- Google Pixel 4a
- Google Pixel 5a 5G
- QCS6490 (Proxy)
- QCS8250 (Proxy)
- QCS8550 (Proxy)
- RB3 Gen 2 (Proxy)
- RB5 (Proxy)
- SA8255 (Proxy)
- SA8650 (Proxy)
- SA8775 (Proxy)
- Samsung Galaxy S21
- Samsung Galaxy S21 Ultra
- Samsung Galaxy S21+
- Samsung Galaxy S22 5G
- Samsung Galaxy S22 Ultra 5G
- Samsung Galaxy S22+ 5G
- Samsung Galaxy S23
- Samsung Galaxy S23 Ultra
- Samsung Galaxy S23+
- Samsung Galaxy S24
- Samsung Galaxy S24 Ultra
- Samsung Galaxy S24+
- Samsung Galaxy Tab S8
- Xiaomi 12
- Xiaomi 12 Pro
Supported Chipsets
- Qualcomm® QCS6490
- Qualcomm® QCS8250
- Qualcomm® QCS8550
- Qualcomm® SA8255P
- Qualcomm® SA8650P
- Qualcomm® SA8775P
- Snapdragon® 8 Gen 1 Mobile
- Snapdragon® 8 Gen 2 Mobile
- Snapdragon® 8 Gen 3 Mobile
- Snapdragon® 888 Mobile
- Snapdragon® X Elite