MediaPipe-Hand-Detection
Real‑time hand detection optimized for mobile and edge.
The MediaPipe Hand Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of hands in an image.
Technical Details
Input resolution:256x256
Number of parameters (MediaPipeHandDetector):1.76M
Model size (MediaPipeHandDetector):6.76 MB
Number of parameters (MediaPipeHandLandmarkDetector):2.01M
Model size (MediaPipeHandLandmarkDetector):7.71 MB
Applicable Scenarios
- Gesture Control
- Virtual Reality
- Gaming
Licenses
Source Model:APACHE-2.0
Deployable Model:AI Model Hub License
Tags
- real-time
Supported IoT Devices
- QCS8550 (Proxy)
Supported IoT Chipsets
- Qualcomm® QCS8550 (Proxy)
Related Models
See all modelsLooking for more? See models created by industry leaders.
Discover Model Makers