Profile Job Results
Jobs
j5m30l3qg
Results Ready
Name
bgnet_float
Target Device
- SA8650 (Proxy)
- Android 13
- Qualcomm® SA8650P
Creator
ai-hub-support@qti.qualcomm.com
Input Specs
image: float32[1, 3, 416, 416]Completion Time
11/30/2025, 9:56:53 AM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.40.0.251030114326_189385
- QNN TfLite Delegate: v2.40.0.251030114326_189385
- Android: 13 (TP1A.220624.014)
- AI Hub: aihub-2025.11.18.0
Estimated Inference Time
23.0 ms
Estimated Peak Memory Usage
0 ‑ 23 MB
Compute Units
NPU
361
| Stage | Time | Memory |
|---|---|---|
First App Load | 22.5 s | 1 GB |
Subsequent App Load | 21.9 s | 1 GB |
Inference | 23.0 ms | 0‑23 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.performance_mode | kHtpBurst |
| htp_options.precision | kHtpFp16 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







