Profile Job Results
Jobs
jg9wwn0lp
Results Ready
Name
bevfusion_det_float_BEVFusionEncoder2
Target Device
- Samsung Galaxy S24
- Android 14
- Snapdragon® 8 Gen 3 | SM8650
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
camera2lidars: float32[1, 6, 4, 4]img: float32[1, 6, 256, 32, 88]post_trans: float32[1, 6, 1, 3]inv_post_rots: float32[1, 6, 3, 3]intrins: float32[1, 6, 3, 3]Completion Time
10/26/2025, 4:47:15 AM
Options
--qairt_version latestVersions
- QAIRT: v2.39.0.250925215840_163802
- QNN Backend API: 5.39.0
- QNN Core API: 2.29.0
- Android: 14 (UP1A.231005.007)
- AI Hub: aihub-2025.10.21.0
Estimated Inference Time
2.64 s
Estimated Peak Memory Usage
17 ‑ 35 MB
Compute Units
NPU
283
| Stage | Time | Memory |
|---|---|---|
First App Load | 853 ms | 447‑454 MB |
Subsequent App Load | 636 ms | 526‑534 MB |
Inference | 2.64 s | 17‑35 MB |
| QNN | Value |
|---|---|
| context_options.htp_options.performance_mode | BURST |
| default_graph_options.htp_options.optimizations[0].type | FINALIZE_OPTIMIZATION_FLAG |
| default_graph_options.htp_options.optimizations[0].value | 3.0 |
| default_graph_options.htp_options.precision | FLOAT16 |
| default_graph_options.htp_options.vtcm_size | 0 |
Sign up to run this model on a hosted Qualcomm® device!
Run on device






