Profile Job Results
Jobs
jgje28de5
Results Ready
Name
pidnet_float
Target Device
- SA7255P ADP
- Android 14
- Qualcomm® SA7255P
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
image: float32[1, 1024, 2048, 3]Completion Time
10/25/2025, 7:59:35 PM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.39.0.250925215840_163802-auto
- QNN TfLite Delegate: v2.39.0.250925215840_163802-auto
- Android: 14 (UQ1A.240205.002)
- Build ID: Snapdragon_Auto.HQX.4.5.6.0.r2-00012-STD.PROD-5
- AI Hub: aihub-2025.10.21.0
Estimated Inference Time
137 ms
Estimated Peak Memory Usage
2 ‑ 58 MB
Compute Units
NPU
169
| Stage | Time | Memory |
|---|---|---|
First App Load | 9.04 s | 283‑292 MB |
Subsequent App Load | 9.21 s | 279‑420 MB |
Inference | 137 ms | 2‑58 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.precision | kHtpFp16 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device






