Profile Job Results
Jobs
jgkyxyevp
Results Ready
Name
efficientvit_b2_cls_float
Target Device
- Samsung Galaxy S24
- Android 14
- Snapdragon® 8 Gen 3 | SM8650
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
image_tensor: float32[1, 224, 224, 3]Completion Time
1/11/2026, 4:08:23 AM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.41.0.251128145156_191518
- QNN TfLite Delegate: v2.41.0.251128145156_191518
- Android: 14 (UP1A.231005.007)
- AI Hub: aihub-2026.01.05.0
Estimated Inference Time
3.79 ms
Estimated Peak Memory Usage
0 ‑ 289 MB
Compute Units
NPU
379
| Stage | Time | Memory |
|---|---|---|
First App Load | 2.59 s | 546‑553 MB |
Subsequent App Load | 150 ms | 50‑340 MB |
Inference | 3.79 ms | 0‑289 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.performance_mode | kHtpBurst |
| htp_options.precision | kHtpFp16 |
| htp_options.optimization_strategy | kHtpOptimizeForInferenceO3 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







