Profile Job Results
Jobs
jgl391dlg
Results Ready
Name
litehrnet_float
Target Device
- SA7255P ADP
- Android 14
- Qualcomm® SA7255P
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
image: float32[1, 3, 256, 192]Completion Time
12/14/2025, 1:04:00 AM
Versions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.40.0.251030114326_189385-auto
- QNN TfLite Delegate: v2.40.0.251030114326_189385-auto
- Android: 14 (UQ1A.240205.002)
- Build ID: Snapdragon_Auto.HQX.4.5.6.0.r2-00012-STD.PROD-5
- AI Hub: aihub-2025.12.07.0
Estimated Inference Time
8.83 ms
Estimated Peak Memory Usage
0 ‑ 60 MB
Compute Units
NPU
1110
CPU
2
| Stage | Time | Memory |
|---|---|---|
First App Load | 8.11 s | 210‑219 MB |
Subsequent App Load | 8.71 s | 204‑388 MB |
Inference | 8.83 ms | 0‑60 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.precision | kHtpFp16 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







