Profile Job Results
Jobs
jgo3qw0dg
Results Ready
Name
unet_segmentation_float
Target Device
- SA8255 (Proxy)
- Android 13
- Qualcomm® SA8255P
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
image: float32[1, 640, 1280, 3]Completion Time
1/10/2026, 6:01:37 PM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.41.0.251128145156_191518
- QNN TfLite Delegate: v2.41.0.251128145156_191518
- Android: 13 (TP1A.220624.014)
- AI Hub: aihub-2026.01.05.0
Estimated Inference Time
139 ms
Estimated Peak Memory Usage
6 ‑ 217 MB
Compute Units
NPU
31
| Stage | Time | Memory |
|---|---|---|
First App Load | 26.1 s | 605‑606 MB |
Subsequent App Load | 273 ms | 73‑76 MB |
Inference | 139 ms | 6‑217 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.performance_mode | kHtpBurst |
| htp_options.precision | kHtpFp16 |
| htp_options.optimization_strategy | kHtpOptimizeForInferenceO3 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







