Profile Job Results
Jobs
jp2lnzy4g
Results Ready
Name
trocr_float_TrOCRDecoder
Target Device
- Samsung Galaxy S25
- Android 15
- Snapdragon® 8 Elite for Galaxy | SM8750-AC
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
input_ids: int32[1, 1]index: int32[1]kv_0_attn_key: float32[1, 8, 19, 32]kv_0_attn_val: float32[1, 8, 19, 32]kv_0_cross_attn_key: float32[1, 8, 578, 32]kv_0_cross_attn_val: float32[1, 8, 578, 32]kv_1_attn_key: float32[1, 8, 19, 32]kv_1_attn_val: float32[1, 8, 19, 32]kv_1_cross_attn_key: float32[1, 8, 578, 32]kv_1_cross_attn_val: float32[1, 8, 578, 32]kv_2_attn_key: float32[1, 8, 19, 32]kv_2_attn_val: float32[1, 8, 19, 32]kv_2_cross_attn_key: float32[1, 8, 578, 32]kv_2_cross_attn_val: float32[1, 8, 578, 32]kv_3_attn_key: float32[1, 8, 19, 32]kv_3_attn_val: float32[1, 8, 19, 32]kv_3_cross_attn_key: float32[1, 8, 578, 32]kv_3_cross_attn_val: float32[1, 8, 578, 32]kv_4_attn_key: float32[1, 8, 19, 32]kv_4_attn_val: float32[1, 8, 19, 32]kv_4_cross_attn_key: float32[1, 8, 578, 32]kv_4_cross_attn_val: float32[1, 8, 578, 32]kv_5_attn_key: float32[1, 8, 19, 32]kv_5_attn_val: float32[1, 8, 19, 32]kv_5_cross_attn_key: float32[1, 8, 578, 32]kv_5_cross_attn_val: float32[1, 8, 578, 32]Completion Time
1/10/2026, 5:57:37 PM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.41.0.251128145156_191518
- QNN TfLite Delegate: v2.41.0.251128145156_191518
- Android: 15 (AP3A.240905.015.A2)
- AI Hub: aihub-2026.01.05.0
Estimated Inference Time
1.16 ms
Estimated Peak Memory Usage
0 ‑ 303 MB
Compute Units
NPU
399
| Stage | Time | Memory |
|---|---|---|
First App Load | 2.84 s | 592‑599 MB |
Subsequent App Load | 136 ms | 0‑300 MB |
Inference | 1.16 ms | 0‑303 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.performance_mode | kHtpBurst |
| htp_options.precision | kHtpFp16 |
| htp_options.optimization_strategy | kHtpOptimizeForInferenceO3 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







