Profile Job Results
Jobs
jp3mm313g
Results Ready
Name
bgnet_float
Target Device
- SA8775P ADP
- Android 14
- Qualcomm® SA8775P
Creator
ai-hub-support@qti.qualcomm.com
Input Specs
image: float32[1, 3, 416, 416]Completion Time
2/1/2026, 10:29:09 AM
Versions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.42.0.251225135753_193295
- QNN TfLite Delegate: v2.42.0.251225135753_193295
- Android: 14 (UAG2.240908.001)
- Build ID: Snapdragon_Auto.HQX.4.5.6.0.r2-00016-STD.PROD-3
- AI Hub: aihub-2026.01.22.0
Estimated Inference Time
31.7 ms
Estimated Peak Memory Usage
1 ‑ 303 MB
Compute Units
NPU
360
| Stage | Time | Memory |
|---|---|---|
First App Load | 28.4 s | 917‑922 MB |
Subsequent App Load | 792 ms | 126‑428 MB |
Inference | 31.7 ms | 1‑303 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.precision | kHtpFp16 |
| htp_options.optimization_strategy | kHtpOptimizeForInferenceO3 |
| htp_options.useConvHmx | true |
| htp_options.device_id | 1 |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







