Profile Job Results
Jobs
jp87yq3x5
Results Ready
Name
litehrnet_float
Target Device
- SA8295P ADP
- Android 14
- Qualcomm® SA8295P
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
image: float32[1, 3, 256, 192]Completion Time
1/11/2026, 12:12:26 AM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.41.0.251128145156_191518-auto
- QNN TfLite Delegate: v2.41.0.251128145156_191518-auto
- Android: 14 (UQ1A.240205.002)
- Build ID: SA8295P.HQX.4.5.6.0-00006-STD.PROD-1
- AI Hub: aihub-2026.01.05.0
Estimated Inference Time
6.20 ms
Estimated Peak Memory Usage
0 ‑ 194 MB
Compute Units
NPU
1110
CPU
2
| Stage | Time | Memory |
|---|---|---|
First App Load | 10.1 s | 202‑208 MB |
Subsequent App Load | 159 ms | 5‑199 MB |
Inference | 6.20 ms | 0‑194 MB |
| TensorFlow Lite | Value |
|---|---|
| number_of_threads | 4 |
| QNN Delegate | Value |
|---|---|
| backend_type | kHtpBackend |
| log_level | kLogLevelWarn |
| htp_options.precision | kHtpFp16 |
| htp_options.optimization_strategy | kHtpOptimizeForInferenceO3 |
| htp_options.useConvHmx | true |
Sign up to run this model on a hosted Qualcomm® device!
Run on device







