Profile Job Results
Jobs
jpy6jeyr5
Results Ready
Name
efficientvit_b2_cls_float
Target Device
- Samsung Galaxy S24
- Android 14
- Snapdragon® 8 Gen 3 | SM8650
Creator
ai-hub-support@qti.qualcomm.com
Target Model
Input Specs
image_tensor: float32[1, 224, 224, 3]Completion Time
10/26/2025, 1:59:42 AM
Options
--qairt_version latestVersions
- TensorFlow Lite: 2.17.0
- QAIRT: v2.39.0.250925215840_163802
- QNN TfLite Delegate: v2.39.0.250925215840_163802
- Android: 14 (UP1A.231005.007)
- AI Hub: aihub-2025.10.21.0
Estimated Inference Time
3.44 ms
Estimated Peak Memory Usage
0 ‑ 115 MB
Compute Units
NPU
379
| Stage | Time | Memory | 
|---|---|---|
| First App Load | 2.82 s | 638‑645 MB | 
| Subsequent App Load | 2.85 s | 631‑892 MB | 
| Inference | 3.44 ms | 0‑115 MB | 
| TensorFlow Lite | Value | 
|---|---|
| number_of_threads | 4 | 
| QNN Delegate | Value | 
|---|---|
| backend_type | kHtpBackend | 
| log_level | kLogLevelWarn | 
| htp_options.performance_mode | kHtpBurst | 
| htp_options.precision | kHtpFp16 | 
| htp_options.useConvHmx | true | 
Sign up to run this model on a hosted Qualcomm® device!
Run on device






