DDRNet23-Slim
Segment images or video by class in real-time on device.
DDRNet23Slim is a machine learning model that segments an image into semantic classes, specifically designed for road-based scenes. It is designed for the application of self-driving cars.
Technical Details
Model checkpoint:DDRNet23s_imagenet.pth
Inference latency:RealTime
Input resolution:2048x1024
Number of parameters:5.69M
Model size:21.7 MB
Number of output classes:19
Applicable Scenarios
- Self-driving cars
Supported Mobile Form Factors
- Phone
- Tablet
Licenses
Source Model:MIT
Deployable Model:AI Model Hub License
Tags
- real-timeA “real-time” model can typically achieve 5-60 predictions per second. This translates to latency ranging up to 200 ms per prediction.
Supported Mobile Devices
- Google Pixel 3
- Google Pixel 3a
- Google Pixel 3a XL
- Google Pixel 4
- Google Pixel 4a
- Google Pixel 5a 5G
- Samsung Galaxy S21
- Samsung Galaxy S21 Ultra
- Samsung Galaxy S21+
- Samsung Galaxy S22 5G
- Samsung Galaxy S22 Ultra 5G
- Samsung Galaxy S22+ 5G
- Samsung Galaxy S23
- Samsung Galaxy S23 Ultra
- Samsung Galaxy S23+
- Samsung Galaxy S24
- Samsung Galaxy S24 Ultra
- Samsung Galaxy S24+
- Samsung Galaxy Tab S8
- Xiaomi 12
- Xiaomi 12 Pro
Supported Mobile Chipsets
- Snapdragon® 8 Gen 1 Mobile
- Snapdragon® 8 Gen 2 Mobile
- Snapdragon® 8 Gen 3 Mobile
- Snapdragon® 888 Mobile