Riffusion

State-of-the-art generative AI model used to generate spectrogram images given any text input. These spectrograms can be converted into audio clips.

Generates high resolution spectrograms images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

Technical Details

Input:Text prompt to generate spectrogram image
QNN-SDK:2.20
Text Encoder Number of parameters:340M
UNet Number of parameters:865M
VAE Decoder Number of parameters:83M
Model size:1GB

Applicable Scenarios

  • Music Generation
  • Music Editing
  • Content Creation

Supported Form Factors

  • Phone
  • Tablet

Tags

  • generative-ai
    Models capable of generating text, images, or other data using generative models, often in response to prompts.
  • quantized
    A “quantized” model can run in low or mixed precision, which can substantially reduce inference latency.

Supported Devices

  • Google Pixel 3
  • Google Pixel 3a
  • Google Pixel 3a XL
  • Google Pixel 4
  • Google Pixel 4a
  • Google Pixel 5a 5G
  • QCS8550 (Proxy)
  • Samsung Galaxy S21
  • Samsung Galaxy S21 Ultra
  • Samsung Galaxy S21+
  • Samsung Galaxy S22 5G
  • Samsung Galaxy S22 Ultra 5G
  • Samsung Galaxy S22+ 5G
  • Samsung Galaxy S23
  • Samsung Galaxy S23 Ultra
  • Samsung Galaxy S23+
  • Samsung Galaxy S24
  • Samsung Galaxy S24 Ultra
  • Samsung Galaxy S24+
  • Samsung Galaxy Tab S8
  • Xiaomi 12
  • Xiaomi 12 Pro

Supported Chipsets

  • Qualcomm® QCS8550
  • Snapdragon® 8 Gen 1 Mobile
  • Snapdragon® 8 Gen 2 Mobile
  • Snapdragon® 8 Gen 3 Mobile
  • Snapdragon® 888 Mobile
  • Snapdragon® X Elite