MediaPipe-Hand-Gesture-Recognition

Real‑time hand gesture recognition optimized for mobile and edge.

The MediaPipe Gesture Recognizer is a real‑time machine learning pipeline that detects hands, predicts 21 hand landmarks, determines handedness (left/right), and classifies gestures from a predefined set

Technical Details

Input resolution:256x256
Number of parameters (PalmDetector):1.76M
Model size (PalmDetector) (w8a8):2.05 MB
Number of parameters (HandLandmarkDetector):2.72M
Model size (HandLandmarkDetector) (w8a8):3.12 MB
Number of parameters (CannedGestureClassifier):143K
Model size (CannedGestureClassifier) (w8a8):180 KB
Model size (PalmDetector) (float):6.75 MB
Model size (HandLandmarkDetector) (float):10.4 MB
Model size (CannedGestureClassifier) (float):577 KB

Applicable Scenarios

  • Gesture Control
  • Virtual Reality
  • Gaming

License

Tags

  • real-time

Supported IoT Devices

  • Dragonwing IQ-9075 EVK
  • Dragonwing Q-6690 MTP
  • Dragonwing RB3 Gen 2 Vision Kit
  • QCS8275 (Proxy)
  • QCS8550 (Proxy)

Supported IoT Chipsets

  • Qualcomm® QCM6690
  • Qualcomm® QCS6490
  • Qualcomm® QCS8275 (Proxy)
  • Qualcomm® QCS8550 (Proxy)
  • Qualcomm® QCS9075

Related Models

See all models

Looking for more? See models created by industry leaders.

Discover Model Makers